
Journal of Approximation Theory 102, 243�262 (2000)

Interpolation by Weak Chebyshev Spaces

Oleg Davydov1

Mathematisches Institut, Justus-Liebig-Universita� t Giessen,
35392 Giessen, Germany

E-mail: oleg.davydov�math.uni-giessen.de

and

Manfred Sommer

Mathematisch-Geographische Fakulta� t, Katholische Universita� t Eichsta� tt,
85071 Eichsta� tt, Germany

E-mail: manfred.sommer�ku-eichstaett.de

Communicated by Borislav Bojanov

Received October 20, 1998; accepted in revised form June 17, 1999

We present two characterizations of Lagrange interpolation sets for weak
Chebyshev spaces. The first of them is valid for an arbitrary weak Chebyshev space
U and is based on an analysis of the structure of zero sets of functions in U extend-
ing Stockenberg's theorem. The second one holds for all weak Chebyshev spaces
that possess a locally linearly independent basis. � 2000 Academic Press

1. INTRODUCTION

Let U denote a finite-dimensional subspace of real valued functions
defined on a totally ordered set K, for example, an arbitrary subset of R.

A finite subset T=[t1 , ..., tn] of K, where n=dim U, is called an inter-
polation set (I-set) w.r.t. U if for any given data [ y1 , ..., yn] there exists a
unique function u # U such that

u(ti)= yi , i=1, ..., n.

It is easy to see that T is an I-set w.r.t. U if and only if

dim U |T=n,
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where U |T :=[u |T : u # U]. For a set of s points, T=[t1 , ..., ts]/K, with
s<n, we say that T is an I-set if dim U |T=s.

We are interested in describing I-sets w.r.t. U in the case when U is a
weak Chebyshev space (WT-space), i.e., every u # U has at most n&1 sign
changes. The primary example of a WT-space is the space of univariate
polynomial splines, in which case all interpolation sets can be characterized
by well-known Schoenberg�Whitney condition (see e.g. [12]). Extensions
of Schoenberg�Whitney theorem to some classes of generalized spline
spaces were proposed in [11, 13, 14].

Recently, some characterizations of I-sets w.r.t. weak Chebyshev spaces
without any a priori assumption about ``piecewise Haar'' spline-like struc-
ture have been found. In [4] it was proved that Schoenberg�Whitney
characterization in its ``dimension form'' holds true for a WT-space U if
and only if U |K$ is also a WT-space for all K$/K. This last property is
satisfied, for example, if U is a weak Descartes space. In [2] the ``support
form'' of Schoenberg�Whitney theorem has been shown to hold true for
every WT-space that possesses a locally linearly independent weak Descartes
basis. (See [7] for a review of various forms of Schoenberg�Whitney con-
dition, especially in regard to their extendibility to multivariate splines.)

The purpose of this paper is twofold. In Section 2 we present a charac-
terization of I-sets w.r.t. arbitrary weak Chebyshev spaces (Theorem 2.1),
which does not involve any structural properties of U. Instead, the unions
of the intervals [ti , ti+1] between interpolation points are considered. This
result relies on an extension of Stockenberg's theorem about zeros of func-
tions in a WT-space (Theorem 2.4), which seems to be of independent
interest. A (rather lengthy) proof of Theorem 2.4 is given in Section 4.

In Section 3 we generalize the above mentioned theorem of [2] and
show that Schoenberg�Whitney characterization holds true for all weak
Chebyshev spaces with a locally linearly independent basis. The proof
involves an analysis of the relationship between I-sets and so-called strong
almost interpolation sets as well as our previous results on almost interpola-
tion [5, 9] and Theorem 2.1.

2. INTERPOLATION BY ARBITRARY WEAK CHEBYSHEV SPACES

We denote by F(K) the linear space of all real valued functions defined
on K and by C(K) its subspace consisting of all continuous functions. For
any f # F(K) and any subspace U of F(K), let

Z( f ) :=[t # K : f (t)=0], Z(U) := ,
f # U

Z( f ).
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We need the following (somewhat unusual in the case ;<:) definition of
the closed interval with endpoints :, ; # K,

[:, ;] :={[t # K : :�t�;]
[t # K : t�: or t�;]

if :�;
if ;<:.

In the same way we define open and halfopen intervals.
The main result of this section reads as follows.

Theorem 2.1. Let U be an n-dimensional weak Chebyshev subspace of
F(K), and let T=[t1 , ..., tn]/K"Z(U) such that t1< } } } <tn , and
tn+1 :=t1 . The following conditions are equivalent:

(1) T is an I-set w.r.t. U.

(2) For all P/[1, ..., n],

card \T & .
i # P

[ti , ti+1]+�dim U |�i # P [ti , ti+1] . (2.1)

A simple example shows that this characterization is no longer valid if
one omits the assumption that U is a weak Chebyshev space. Moreover, we
conjecture that only for WT-spaces every set T satisfying condition (2) is
an I-set.

Example 2.2. Let K=[0, 3]/R and assume that U=span[u1 , u2]
where u1=1 on K and

1&t if 0�t�1

u2 (t)={0 if 1<t<2

t&2 if 2�t�3.

Set u~ =1�2u1&u2 . Then it is obvious that u~ has two sign changes at
t1=1�2 and t2=5�2, respectively. This implies that U fails to be a weak
Chebyshev space and, in particular, that T=[t1 , t2] fails to be an I-set
w.r.t. U. On the other hand, T satisfies condition (2) of Theorem 2.1.

We will prove Theorem 2.1 at the end of this section as a consequence
of a result about location of zeros of functions in WT-spaces. The following
generalized notion of separation of zeros will be particular important for
our analysis.
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Suppose that u # U and Z� /Z(u) are given. We say that zeros
x1 , ..., xm # Z(u)"Z� , where x1< } } } <xm , are cyclically separated with
respect to Z� if for every i # [1, ..., m] there exists a subinterval

[ y2i&1 , y2i]/(xi , x i+1), y2i&1 , y2i # K, (2.2)

(we set xm+1 :=x1 if i=m) such that

u( yj){0, j=1, ..., 2m, (2.3)

and

(xi , xi+1) & Z� /( y2i&1 , y2i). (2.4)

Note that y2i&1� y2i , i=1, ..., m&1. For i=m the following three cases
can occur: (1) xm< y2m&1� y2m , (2) y2m&1� y2m<x1 , and (3) y2m<x1<
xm< y2m&1 .

If Z� & (xi , x i+1)=<, then it is sufficient to have one point y2i&1= y2i ,
with u( y2i&1){0. Otherwise, we need two different points y2i&1 and y2i

satisfying (2.4). If Z� =<, then we simply say that x1 , ..., xm are cyclically
separated zeros of u. Note that this definition requires that xm and x1 are
also separated from each other by some points y2m&1 and y2m (possibly
equal) that lie outside [x1 , xm], which is the reason for the word ``cycli-
cally''. If Z� =< and (2.2) and (2.3) are only satisfied for i=1, ..., m&1 and
j=1, ..., 2m&2, respectively, then the zeros x1 , ..., xm are separated in usual
sense.

We say that x # Z(u) is an essential zero of u # U if x � Z(U).
A relationship between the number of separated essential zeros of func-

tions u # U and the dimension n of U was found by Stockenberg [15]. We
recall his theorem which has played an important role in characterizing
continuous selections for metric projections (see e.g. [10]).

Theorem 2.3. [15] Suppose that U is an n-dimensional weak Chebyshev
space.

(1) If there exists u # U with n separated essential zeros x1 , ..., xn such
that x1< } } } <xn , then u(t)=0 for all t # [xn , x1].

(2) No u # U has more than n separated essential zeros.

Note that both statements of Theorem 2.3 are obviously contained in the
following formulation: no u # U has more than n&1 cyclically separated
essential zeros.

We generalize Theorem 2.3 as follows.
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Theorem 2.4. Suppose that U is an n-dimensional weak Chebyshev sub-
space of F(K), and let Z� /K. If there exists u # U such that Z� /Z(u), and
u has m essential zeros x1< } } } <xm that are cyclically separated w.r.t. Z� ,
then

dim U |Z� �n&m&1. (2.5)

The proof of Theorem 2.4 will be given in Section 4.
Let us see that Theorem 2.4 contains Theorem 2.3 as a special case.

Indeed, if we take Z� =<, then (2.5) gives the bound m�n&1 on the num-
ber m of cyclically separated essential zeros of u, which yields Theorem 2.3.

Moreover, in the situation of Theorem 2.3, (1), i.e., when u # U has n
separated essential zeros x1< } } } <xn , we can deduce from (2.5) a slightly
stronger statement by setting Z� :=[xn , x1]. Since x1 , ..., xn are separated in
[x1 , xn], it clearly follows that x2 , ..., xn&1 are cyclically separated w.r.t. Z� .
Thus, by (2.5), and in view of the assumption that x1 � Z(U), we have
dim U |[xn , x1]=1. Therefore, under the hypotheses of Theorem 2.3, (1), not
only u itself, but also every function v # U such that v(x1)=0 or v(xn)=0
necessarily satisfies v(t)=0 for all t # [xn , x1]. Particularly, in the important
special case when K contains its minimal and maximal elements, a=min K
and b=max K, we have the following corollary: if dim U |[a, b]=2, then no
u # U has more than n&1 separated essential zeros. This applies specifically
to spline spaces and recovers their well-known property (see [12]).

We will see now that Theorem 2.1 immediately follows from
Theorem 2.4.

Proof of Theorem 2.1. If T is an I-set, then card(T & K$)�dim U |K$ for
every subset K$/K. Therefore, we only have to show that (2) implies (1).
On the contrary, suppose that T=[t1 , ..., tn] satisfies (2), but fails to be an
I-set. Hence, there exists a function u # U"[0] such that

u(ti)=0, i=1, ..., n.

We set

P� =[i : u |[ti , ti+1]=0], Z� = .
i # P�

[ti , ti+1].

Let

T"Z� =[x1 , ..., xm].
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Then it is easy to see that x1 , ..., xm are essential zeros of u that are cycli-
cally separated w.r.t. Z� . Therefore, by (2.5), dim U |Z� �n&m&1. On the
other hand, (2.1), with P=P� , implies dim U |Z� �n&m, a contradiction. K

3. WT-SPACES WITH A LOCALLY LINEARLY
INDEPENDENT BASIS

Throughout this section we assume that K is endowed with a topology
consistent with the ordering. We denote by M� and int M the closure and
the interior, respectively, of any subset M/K. For every function f # F(K),
we set

supp f :=[x # K : f (x){0].

Let [u1 , ..., un] be a system of functions in F(K). The following notion of
a locally linearly independent system which generalizes a well-known
property of univariate B-splines has proven to be important in the
problems of interpolation.

Definition 3.1. We say that [u1 , ..., un] is a locally linearly independent
system (LI-system) if for any t # K and any neighborhood B(t) of t there
exists an open set B$, with t # B$/B(t), such that the subsystem

[ui : B$ & supp ui {<]

is linearly independent on B$.

It has been shown in [9] that the above definition is equivalent to the
standard definition of local linear independence by de Boor and
Ho� llig [1], so that [u1 , ..., un] is an LI-system if and only if for every open
B/K, the condition

:
n

i=1

aiu i (x)=0, x # B,

implies ai=0 for all i such that B & supp ui {<.
An important feature of an LI-system [u1 , ..., un] is that it forms a least

supported basis for its span (see Carnicer and Pen~ a [3]).
Carnicer and Pen~ a [2] have also shown that for a space of continuous

functions on the real interval spanned by an LI-system satisfying weak
Descartes property, interpolation sets can be characterized by Schoenberg�
Whitney condition in support form. In order to formulate this result, we
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need the definition of a weak Descartes system. Recall that a matrix is said
to be totally positive if all its minors are nonnegative.

Definition 3.2. We say that a system of functions [u1 , ..., un] in F(K)
is a weak Descartes system (WD-system) if the matrix (ui (tj))n

i, j=1 is totally
positive for all choices of t1 , ..., tn # K such that t1< } } } <tn .

Theorem 3.3. [2] Suppose that K=[a, b] is an interval of the real line
R, and [u1 , ..., un]/C(K) is simultaneously an LI-system and WD-system.
Let T=[t1 , ..., tn]/K such that t1< } } } <tn . The following conditions are
equivalent:

(1) T is an I-set w.r.t. U=span[u1 , ..., un].

(2) ti # [x # K : ui (x){0], i=1, ..., n.

The main objective of this section is to provide a generalization of
Theorem 3.3 in two directions. First, we relax the condition that
[u1 , ..., un] is a WD-system and show that the theorem essentially holds for
every weak Chebyshev space possessing an LI-basis. Second, we allow K to
be a general totally ordered set. Our main tools are Theorem 2.1 and some
results of our previous research [8, 9] on almost interpolation by spaces
with locally linearly independent bases.

Definition 3.4. Let U be a finite-dimensional subspace of F(K),
dim U=n. A set T=[t1 , ..., ts]/K, s�n is called an almost interpolation
set (AI-set) w.r.t. U if for any system of neighborhoods Bi of ti , i=1, ..., s,
there exist points ti$ # Bi such that T $=[t$1 , ..., t$s] is an I-set w.r.t. U.

Next two theorems are valid for any topological space K.

Theorem 3.5. [5] Let U be a finite-dimensional subspace of F(K),
dim U=n, and let T=[t1 , ..., ts]/K, s�n. Then T is an AI-set w.r.t. U if
and only if

dim U |B(T $)�card T $, all open B(T $)#T $, (3.1)

for every choice of a nonempty subset T $/T.

We note that condition (3.1) can be also written as

l-dimT $ U�card T $,

where l-dimT $ U denotes the local dimension of U on T $, i.e.,

l-dimT $ U :=inf[dim U |B : T $/B, B open].
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Theorem 3.6. [9] Let [u1 , ..., un]/F(K) be a locally linearly independent
system and U=span[u1 , ..., un]. A finite set T=[t1 , ..., ts]/K, s�n, is an
AI-set w.r.t. U if and only if there exists some permutation _ of [1, ..., n]
such that

ti # supp u_(i) , i=1, ..., s.

Generally, for example if K is a domain in Rd, d>1, many almost inter-
polation sets fail to be I-sets. However, in our case of a totally ordered K
the situation is much better. In fact, it is often enough to strengthen the
condition of almost interpolation in the following obvious way, in order to
get a characterization of I-sets.

Definition 3.7. A set T=[t1 , ..., ts]/K, s�n is called a strong AI-set
w.r.t. U if there exist neighborhoods Bi of ti , i=1, ..., s, such that
T $=[t$1 , ..., t$s] is an AI-set w.r.t. U as soon as ti$ # Bi , i=1, ..., s.

If U includes only continuous functions on K, i.e., U/C(K), then every
I-set w.r.t. U is easily seen to be a strong AI-set.

Let now K be again a totally ordered set. We say that a point t # K has
V-property if either t is an isolated point of K, or

t=sup[x # K : x<t]=inf[x # K : x>t].

(The latter means, in particular, that both sets in the last display are non-
empty.)

Lemma 3.8. Let U be a finite-dimensional subspace of F(K), dim U=n,
and let T=[t1 , ..., ts]/K, s�n, such that t1< } } } <ts , and ts+1 :=t1 . Sup-
pose that every point ti , i=1, ..., s, satisfies V-property. If T is a strong
AI-set w.r.t. U, then for every P/[1, ..., s],

card \T & .
i # P

[ti , ti+1]+�dim U |�i # P [ti , ti+1] .

Proof. On the contrary, suppose that

dim U |RP�
<card (T & RP� ) (3.2)

for some P� /[1, ..., s], where RP� =� j # P� [t j , tj+1]. Then we also have

dim U |int RP�
<card (T & RP� ). (3.3)
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However, since T is a strong AI-set and every point ti , i=0, ..., s, satisfies
V-property, for each tj # RP� we can find a point t$j # int RP� such that

T $=[t$1 , ..., t$s]

is an AI-set (we set t$j=tj when tj � RP� ). Thus,

card (T $ & int RP� )=card (T & RP� ), (3.4)

and, because of (3.3),

dim U |int RP�
<card (T $ & int RP� ),

which is impossible in view of Theorem 3.5. K

From this lemma and Theorem 2.1 we immediately get the following
result describing relationship between I-sets and strong AI-sets w.r.t. a
weak Chebyshev space.

Theorem 3.9. Let U be an n-dimensional weak Chebyshev subspace of
F(K), and let T=[t1 , ..., tn]/K"Z(U). Suppose that every point t i ,
i=1, ..., n, satisfies V-property.

(1) If T is a strong AI-set w.r.t. U, then T is an I-set.
(2) Moreover, if U/C(K), then the following conditions are equiv-

alent:

v T is an I-set w.r.t. U.

v T is a strong AI-set w.r.t. U.

The following example shows that Theorem 3.9 is not true in general if
the points of T do not satisfy V-property.

Example 3.10. Let K=[&1, 1] _ [&2, 2]/R and assume that
U=span[u1 , u2] where u1 (t)=t, t # K, and

u2 (t)={1&t2

0
if t # [&1, 1]
if t # [&2, 2].

It then follows that U is a weak Chebyshev space. Set T=[t1 , t2] where
t1=&1 and t2=1. Then in view of Theorem 3.5, T is an AI-set w.r.t. U.
Moreover, T is a strong AI-set, since T $=[t$1 , t$2] is an AI-set for all
t1�t$1<t$2�t2 . However, T fails to be an I-set w.r.t. U since T/Z(u2). It
is also easy to see that both t1 and t2 fail to have V-property.

We now turn to the main subject of this section: characterization of
I-sets for weak Chebyshev spaces with LI-basis.
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Theorem 3.11. Let U be an n-dimensional weak Chebyshev subspace of
C(K), such that U=span[u1 , ..., un], where [u1 , ..., un] is an LI-system, and
let T=[t1 , ..., tn]/K"Z(U). Suppose that every point ti , i=1, ..., n,
satisfies V-property. Then T is an I-set w.r.t. U if and only if there exists
some permutation _ of [1, ..., n] such that

ti # int supp u_(i) , i=1, ..., n. (3.5)

Proof. Let us first assume that (3.5) holds. We show that T is a strong
AI-set w.r.t. U. It follows from Theorem 3.6 that T is an AI-set. Let
Vi :=int supp u_(i) , i=1, ..., n. Then Vi is an open neighborhood of t i ,
i=1, ..., n, and again in view of Theorem 3.6, T $=[t$1 , ..., t$n] is an
AI-set w.r.t. U for all t$i # Vi , i=1, ..., n. This shows that T is a strong AI-set.
It then follows from Theorem 3.9 that T is an I-set w.r.t. U. (This direction
is even true without the assumption that U/C(K).)

For the converse assume that T is an I-set w.r.t. U. We prove (3.5) by
induction on n (where we do not use the hypothesis on U to be a weak
Chebyshev space).

Let n=1. Then U=span[u1] and T=[t1]/K"Z(u1). Hence,
u1 (t1){0, and, since u1 # C(K), t1 # int supp u1 .

Assume now that the statement is true up to n&1. Since T=[t1 , ..., tn]
is an I-set w.r.t. U, it is also an AI-set, which, in view of Theorem 3.6,
implies that there exists some permutation _ of [1, ..., n] such that

ti # supp u_(i) , i=1, ..., n.

Without loss of generality assume that _(i)=i, i=1, ..., n. Suppose now
that t1 � int supp u1 . Then u1 (t1)=0 since u1 # C(K).

Let M :=(ui (t j))n
i, j=1 and let Mi1 denote the submatrix of M obtained

by omitting the i-th row and the first column. Then

det M= :
n

i=1

(&1) i+1 ui (t1) det Mi1 .

Since T is an I-set, det M{0, which implies that ul (t1){0 and det
Ml1 {0 for some l # [2, ..., n].

Hence, [t2 , ..., tn] is an I-set w.r.t. span[u1 , ..., ul&1 , ul+1 , ..., un]. Apply-
ing the induction hypothesis to this situation we find a bijection _~ from
[2, ..., n] to [1, ..., l&1, l+1, ..., n] such that

ti # int supp u_~ (i) , i=2, ..., n.

Moreover, ul (t1){0 implies that t1 # int supp ul .
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Therefore, setting

_(i) :={_~ (i)
l

if i=2,... , n,
if i=1,

we obtain the desired statement

ti # int supp u_(i) , i=1, ..., n.

This completes the proof of Theorem 3.11. K

Example 3.10 also shows that V-property of points ti is essential in the
formulation of Theorem 3.11. Indeed, it is easy to see that the functions u1 ,
u2 of Example 3.10 form an LI-system, and T=[&1, 1] fails to be an I-set
w.r.t. U=span[u1 , u2] despite the fact that (3.5) holds.

If we now take K=[a, b]/R, then V-property is satisfied for every t # K
except t=a or b. Therefore, the hypotheses of Theorem 3.11 do not allow
T to include the endpoints of the interval [a, b]. In fact, some extra condi-
tions at these points have to be imposed.

Theorem 3.12. Let U be an n-dimensional weak Chebyshev subspace of
F[a, b], such that U=span[u1 , ..., un], where [u1 , ..., un] is an LI-system,
and let T=[t1 , ..., tn]/K"Z(U). Suppose that there exists some permuta-
tion _ of [1, ..., n] such that

(1) ti # int supp u_(i) , i=1, ..., n,

(2) u_(i) (t i){0 if ti # [a, b], and
(3) u_(i) (t i) u_( j) (tj)&u_(i) (t j) u_( j) (ti){0 if t i , t j # [a, b], t i {t j .

Then T is an I-set w.r.t. U.

Proof. Let us first consider the case n=1. If t1 # (a, b), then t1

obviously satisfies V-property, and hence T=[t1] is an I-set w.r.t. U by
Theorem 3.11. Otherwise, u1 (t1){0 by (2), and T is an I-set again.

Suppose n�2. If T/(a, b), then every point ti has V-property, and the
statement follows from Theorem 3.11. However, in the case T & [a, b]{<
Theorem 3.11 is not applicable. Therefore, we argue as follows.

We first extend the interval [a, b] to the open interval K� :=(a&=, b+=)
for some =>0. Then every ti # T, i=1, ..., n, obviously satisfies V-property
(w.r.t. K� ). Moreover, extend each function ui , i=1, ..., n, to a function
u~ i # F(K� ) by

ui (t) if t # [a, b],

u~ i (t)={ui (a) if t # (a&=, a),

ui (b) if t # (b, b+=).

253WEAK CHEBYSHEV SPACES



Then U� :=span[u~ 1 , ..., u~ n] is again a weak Chebyshev space (while
[u~ 1 , ..., u~ n] is no longer an LI-system).

If T is a strong AI-set w.r.t. U� , then, by Theorem 3.9, it is also an I-set
w.r.t. U� and, in particular, w.r.t. U (since U=U� |[a, b] and T/[a, b]). Thus,
it suffices to show that T is a strong AI-set w.r.t. U� .

To this end we consider sufficiently small open neighbourhoods Vi of
ti 's, such that

Vi /int supp u~ _(i) ,

Vi & Vj=< if i{ j,

Vi /(a, b) if t i # (a, b),

and take arbitrary points t~ i # Vi , i=1, ..., n. We have to check that
T� :=[t~ 1 , ..., t~ n] is an AI-set w.r.t. U� . In view of Theorem 3.5 this will follow
if we prove that

l-dimT $U� �card T $, (3.6)

for every nonempty T $/T� .
Suppose without loss of generality that t~ 1<t~ 2< } } } <t~ n . Let T $=

[t~ i1 , ..., t~ ir]/T� . If T $/(a, b), then Theorem 3.6 ensures that T $ is an AI-set
w.r.t. U since t~ ij # Vij

/supp u_(ij)
, j=1, ..., r. Therefore,

l-dimT $U� =l-dimT $U�r=card T $

by Theorem 3.5, and (3.6) holds.
Assume that T $"(a, b){<. Obviously, at most two points in T $ may lie

outside (a, b). We consider only the worst case T $"(a, b)=
[t~ i1 , t~ ir]=[t~ 1 , t~ n]. (The other cases can be handled analogously.) Then
necessarily t1=a, tn=b. Set T� :=T $"[t~ 1 , t~ n]. Since T� /(a, b), we have, as
in the above,

l-dimT� U�card T� =r&2.

If l-dimT� U�r, then

l-dimT $U� �l-dimT� U� =l-dimT� U�r=card T $,

and (3.6) follows. Otherwise, recall that by the definition of u~ i we have

u~ _(1) (t~ 1)=u_(1) (t1), u~ _(n) (t~ n)=u_(n) (tn),

u~ _(1) (t~ n)=u_(1) (tn), u~ _(n) (t~ 1)=u_(n) (t1),
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and hence conditions (2) and (3) ensure that

u~ _(1) (t~ 1){0, u~ _(n) (t~ n){0, det \u~ _(1) (t~ 1) u~ _(1) (t~ n)
u~ _(n) (t~ 1) u~ _(n) (t~ n)+{0. (3.7)

Moreover, by [9, Theorem 3.4], since [u1 , ..., un] is an LI-system, we have

l-dimT� U=card [i=1, ..., n : T� & supp ui {<]. (3.8)

If l-dimT� U=r&2, then (3.8) implies that

t~ � supp u_(1) _ supp u_(n) , all t~ # T� .

Combining this with (3.7), we see that l-dimT $U� �r, and (3.6) holds. If
l-dimT� U=r&1, then by (3.8),

t~ � supp u_(i) , all t~ # T� ,

for at least one i # [1, n]. Since u~ _(i) (t~ i){0, i # [1, n], we again have
l-dimT $U� �r, which completes the proof. K

It is easy to see that condition (3) of Theorem 3.12 is superfluous if
[u1 , ..., un]/C[a, b] is simultaneously an LI-system and WD-system, i.e.,
in the setting of Theorem 3.3. Indeed, in this case (3) is a consequence of
(2) in view of the following lemma due to Carnicer and Pen~ a.

Lemma 3.13. [2] Let [u1 , u2]/C[a, b] be simultaneously an
LI-system and WD-system. If u1 (a){0 and u2 (b){0, then

det \u1 (a)
u2 (a)

u1 (b)
u2 (b)+{0.

Moreover, conditions (1) and (2) are now equivalent to

ti # [x # K : u_(i) (x){0], i=1, ..., n,

which shows that Theorem 3.3 follows from Theorem 3.12.

4. PROOF OF THEOREM 2.4

On the contrary, suppose that

dim U |Z� �n&m.
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Then there exists T=[t1 , ..., tn&m]/Z� such that

dim U |T=n&m,

and, since x1 , ..., xm are cyclically separated w.r.t. Z� ,

T/ .
m

i=1

( y2i&1 , y2i)

where [ yj]2m
j=1 satisfy (2.2)�(2.4). We set

X :=[x1 , ..., xm], Y :=[ y1 , ..., y2m],

xm+1 :=x1 , y2m+1 :=y1 .

Let j* # [2m&2, 2m&1, 2m] be a unique index such that

yj*> yj*+1 .

We set

nj :=card ([ yj , yj+1] & (X _ T )), j=1, ..., 2m.

It is obvious that

:
2m

j=1

nj=n. (4.1)

We now construct a function v # U such that (X _ T ) & Z(v)=<. Since
dim U |T=n&m=card T, we interpolate on T as follows. Let j{ j* and
T & [ yj , yj+1]{<. Then in view of (2.4), j is an odd number, which
implies that [ yj , yj+1] & X=<. Thus we have

T & [ yj , yj+1]=[tkj
< } } } <tkj+nj&1], nj�1.

We require

sign v(tkj+s)=(&1)s sign u( y j), s=0, ..., nj&1. (4.2)

Consider now the index j* and assume that T & [ yj* , yj*+1]{<. In view
of (2.4), it is quite clear that only the case j*=2m&1; i.e., y2m<x1 ,
xm< y2m&1 can occur. Moreover, it then follows that nj*=card(T &

[ yj* , yj*+1])�1 and there exists p # [0, ..., n j*] such that

T & [ yj* , yj*+1]=[tkj *
, ..., tkj *+nj *&1]
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and

tkj *+ p< } } } <tkj *+nj *&1< y2m<x1

< } } } <xm< y2m&1<tkj *
< } } } <tkj *+ p&1 .

This means that all points lie to the left of y2m if p=0 and to the right of
y2m&1 if p=n j* . If p{0, we require

sign v(tkj *+s)={(&1)s sign u( y2m&1)
(&1)s+n&1 sign u( y2m&1)

if s=0, ..., p&1
if s= p, ..., nj*&1.

(4.3)

If p=0, we require

sign v(tkj *+s)=(&1)s+nj *&1 sign u( y2m), s=0, ..., n j*&1. (4.4)

Since x1 , ..., xm are essential zeros of u, we can apply [15, Lemma 2] and
require

v(xi){0, i=1, ..., m. (4.5)

Thus, a function v # U with properties (4.2)�(4.5) must exist. In view of
(2.3), we can find =>0 such that

|=v( yj)|<|u( yj)|, j=1, ..., 2m. (4.6)

We now show that at least one of the functions u&=v, u+=v # U has n
sign changes on K contradicting the weak Chebyshev property of U.

To this end we determine a subset D of [1, ..., 2m] as follows. We say
that j # D if both nj {0 and

sign u( yj) u( yj+1)={(&1)nj+1

(&1)nj+n

if j{ j*
if j= j*.

(4.7)

We now divide D into two subsets P and N as follows. Let j # D. We say
that j # P if either j is odd, or j=2i and

sign u( y2i) v(xi+1)={1
(&1)n+1

if y2i<xi+1

if y2i>xi+1.
(4.8)

Note that y2i>xi+1 can happen only when 2i=2m= j*. In this case
nj*=1 and, in view of (4.7), (4.8) is equivalent to

sign u( y1) v(x1)=1.
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We set N=D"P and suppose, without loss of generality, that

card P�card N. (4.9)

We shall show that u&=v has at least n sign changes on K contradicting
the assumption on U to be a weak Chebyshev space. (If card P<card N,
then similar argumentation shows that u+=v has at least n sign changes.)

We first prove the following statement.

Lemma. The function u&=v has at least

n&nj*+card (P"[ j*])&card (N"[ j*]) (4.10)

sign changes in the interval [ yj*+1 , yj*].

Proof. Suppose that j{ j* and nj�1. Let

[ yj , yj+1] & (T _ X)=[`1 , ..., `nj
]

such that yj<`1< } } } <`nj
< yj+1 . Since u(` i)=0, i=1, ..., n j , it follows

from (4.2) that u&=v has at least nj&1 sign changes in [`1 , `nj
].

Moreover, if j � N, we can find some additional sign changes of u&=v in
[ yj , yj+1].

Indeed, if j # [1, ..., 2m]"D, then by the definition of D,

sign u( yj) u( yj+1)=(&1)nj.

Therefore, in view of (4.6), we obtain

sign(u&=v)( yj)=(&1)nj sign(u&=v)( y j+1)

which would be impossible if u&=v had exactly nj&1 sign changes in
[ yj , yj+1]. Thus, u & =v has at least nj sign changes there when
j # [1, ..., 2m]"D.

We next consider the case when j # P. Then, if j is an odd number, it
follows from (4.2) that

sign u( yj)=sign v(`1).

(Note that in this case X & [ yj , yj+1]=< and tkj
=`1 .) Otherwise, if j is

even, it follows from (2.4) and the fact that T/Z� that [ yj , yj+1] &

(T _ X)=[xi+1] where j=2i. Thus `1=x i+1 and by (4.8), again

sign u( yj)=sign v(`1).
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Summarizing both cases, and by (4.6), we obtain

sign(u&=v)( yj)=&sign(u&=v)(`1).

Therefore, u&=v has at least nj sign changes in [ yj , `nj
] if j # P. Moreover,

it follows from (4.7) that

sign(u&=v)( yj)=(&1)nj+1 sign(u&=v)( y j+1).

Hence, u&=v cannot have exactly nj sign changes in [ yj , yj+1]. By the
above arguments, it has at least nj+1 sign changes there when j # P.

Thus we have shown that u&=v has at least nj&1, nj or nj+1 sign
changes in [ yj , yj+1] if j # N, j # [1, ..., 2m]"D or j # P, respectively.
Taking into consideration that we had supposed that j{ j* we conclude
that u&=v has at least

:
j # N"[ j*]

(nj&1)+ :
j � D _ [ j*]

nj+ :
j # P"[ j*]

(nj+1)

sign changes in [ yj*+1 , yj*]=�2m
j=1; j{ j* [ yj , yj+1], which, in view of

(4.1), implies (4.10) and completes the proof of the lemma. K

To finish the proof of Theorem 2.4 we have to show that u&=v has addi-
tional sign changes in the interval [ yj* , yj*+1] if necessary. To this end we
consider several cases. In each case we show that u&=v has at least n sign
changes on K contradicting the assumption on U to be a weak Chebyshev
space.

Case 1. Assume that nj*=0. Then j* � D which implies that
P"[ j*]=P, N"[ j*]=N and, in view of (4.9), the lemma immediately
yields that u&=v has at least n sign changes.

Case 2. Assume that nj*=1 and j* # N. Then

card (P"[ j*])&card (N"[ j*])�1,

and, hence,

n&nj*+card (P"[ j*])&card (N"[ j*])�n

which implies that u&=v has at least n sign changes.

Case 3. Assume that nj*=1 and j* � D. By the lemma, u&=v has at
least n&1 sign changes in [ yj*+1 , yj*]. Since nj* {0, it follows from the
definition of D (see (4.7)), that

sign u( yj*) u( yj*+1)=(&1)nj *+n+1.
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Hence, by (4.6) we obtain

sign(u&=v)( yj*+1)=(&1)n sign(u&=v)( y j*).

Therefore, u&=v has at least n sign changes in [ yj*+1 , y j*].

Case 4. Assume that nj*=1 and j* # P. It follows from the lemma that
u&=v has at least n&2 sign changes in [ yj*+1 , y j*]. By (4.6) and (4.7) we
obtain that

sign(u&=v)( yj*)=(&1)n+1 sign(u&=v)( y j*+1).

Therefore, u&=v must have at least n&1 sign changes in [ yj*+1 , y j*].
Since nj*=1, we have

( yj* , yj*+1) & (X _ T )=[`].

It follows from (4.3), (4.4), (4.7) and (4.8) that

sign v(`)={sign u( y j*)
sign u( y j*+1)

if `> yj*

if `< yj*+1 .

Then, since u=0 on X _ T, the function u&=v has a sign change in ( yj* , `)
if `> yj* and in (`, yj*+1) if `< yj*+1 , respectively. Anyway, u&=v has at
least one sign change outside [ yj*+1 , yj*].

Again, the total number of sign changes is at least n.

Case 5. Assume that nj*�2. Then j* must be odd which implies that
j*=2m&1. It then follows that

T & [ y2m&1 , y2m]=[tk2m&1
, ..., tk2m&1+n2m&1&1],

and, for some p # [0, ..., n2m&1],

tk2m&1+ p< } } } <tk2m&1+n2m&1&1< y2m<x1

< } } } <xm< y2m&1<tk2m&1
< } } } <tk2m&1+ p&1 .

We set

tmin={tk2m&1+ p

y2m

if p{n2m&1 ,
if p=n2m&1 ,

tmax={tk2m&1+p&1

y2m&1

if p{0,
if p=0.

In view of (4.3), it is easy to see that u&=v has at least n2m&1& p&1 sign
changes in [tmin , y2m] and at least p sign changes in [ y2m&1 , tmax] if p{0.
Moreover, by (4.4), u&=v has at least n2m&1 sign changes in [tmin , y2m] if
p=0.
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If j* � D, then by the lemma, u&=v has at least n&n2m&1 sign changes
in [ y2m , y2m&1]. By the definition of D,

sign u( y2m)=(&1)n2m&1+n&1 sign u( y2m&1)

and, in view of (4.6),

sign(u&=v)( y2m)=(&1)n2m&1+n&1 sign(u&=v)( y2m&1).

Therefore, u&=v must in fact have at least n&n2m&1+1 sign changes in
[ y2m , y2m&1].

Thus, by the above arguments, u&=v has at least (n2m&1& p&1)+ p+
(n&n2m&1+1)=n sign changes in K.

Finally, let j* # D. Then j* # P since j* is odd. By the lemma, the func-
tion u&=v has at least n&n2m&1&1 sign changes in [ y2m , y2m&1]. As
above, we deduce from (4.6) and (4.7) that

sign(u&=v)( y2m)=(&1)n2m&1+n sign(u&=v)( y2m&1)

which shows that u&=v must have at least n&n2m&1 sign changes in
[ y2m , y2m&1]. If now p=0 or p=n2m&1 , then by the above arguments,
u&=v has at least (n&n2m&1)+n2m&1=n sign changes in [tmin , y2m&1] or
[ y2m , tmax], respectively. If p # [1, ..., n2m&1&1], then u&=v has at least
(n&n2m&1)+(n2m&1& p&1)+ p=n&1 sign changes in [tmin , tmax].
Moreover, in view of (4.3),

sign(u&=v)(tmin)=(&1) p+n sign u( y2m&1),

sign(u&=v)(tmax)=(&1) p sign u( y2m&1),

which implies that

sign(u&=v)(tmin)=(&1)n sign(u&=v)(tmax).

Hence, u&=v must in fact have at least n sign changes in [tmin , tmax]. K
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